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Abstract
Path integral techniques and the Green’s function formalism are applied to study
the time- and temperature-dependent scattering of a polaronic quasiparticle
using a local anharmonic potential in a bath of diatomic molecules. The
electrical resistivity has been computed for any molecular lattice dimensionality
for different values of the electron–phonon coupling and intermolecular forces.
A broad resistivity peak with non-metallic behaviour at temperatures larger than
�100 K is predicted by the model for sufficiently strong polaron–local potential
coupling strengths. This peculiar behaviour, ascribed to purely structural
effects, is favoured for low dimensionality.

1. Introduction

A considerable amount of theoretical work has been devoted to investigating the conditions
required for polaron formation [1–6] and the polaronic features of real materials [7–10]. While
there is growing evidence that fundamental properties such as the polaron size, effective mass
and ground-state energy are essentially similar in any dimension [11, 12], it is still unclear to
what extent transport properties of polaronic systems (in particular, the electrical resistivity
behaviour versus temperature) depend on the lattice structure and dimensionality. Besides
being conceptually relevant, this question has become of practical interest in connection with
the discovery of unusual effects in underdoped high-Tc superconductors. In fact, the presence
of local lattice distortions causing polaron formation in high-Tc systems has been envisaged
and signs of enhanced anharmonicity for some in-plane and out-of-plane oxygen modes have
been detected in underdoped compounds by several groups [13,14]. In this paper we focus on
the problem of the interaction between a polaronic quasiparticle moving through a molecular
lattice and a local structural instability modelled by a double-well potential in its two-state
configuration. In particular, we derive the effective interaction strengths arising from this
peculiar scattering mechanism and we study the effects on the electrical resistivity both of the
intermolecular forces and of the lattice dimensionality.
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2. The model

Our analysis starts from the following τ -dependent Hamiltonian, where τ is the time which
scales as an inverse temperature according to the Matsubara Green’s function formalism:

H0(τ ) = ε̄(g)c̃†(τ )c̃(τ ) +
∑

q

ωqa
†
q(τ )aq(τ ) +HTLS(τ )

(HTLS(τ )) =
(

0 λQ(τ)

λQ(τ) 0

)

Hint (τ ) = −2λQ(τ)c̃†(τ )c̃(τ )

Q(τ) = −Q0 +
2Q0

τ0
(τ − ti).

(1)

H0(τ ) is the free Hamiltonian encompassing the following:

(a) a polaron created (destroyed) by c̃†(τ ) (c̃(τ )) in an energy band ε̄(g)whose width decreases
exponentially on increasing the strength of the overall electron–phonon coupling constant
g, ε̄(g) = D exp(−g2);

(b) a lattice of diatomic molecules whose phonon frequencies ωq are derived analytically for
a linear chain, a square lattice and a simple cubic lattice through a force-constant model;

(c) a local anharmonic potential with the shape of a two-level system (TLS) in its symmetric
ground-state configuration.

Q(τ) is the one-dimensional space-time hopping path followed by the atom which moves
between two equilibrium positions located at ±Q0. τ0 is the bare hopping time for hopping
between the two minima of the TLS and ti is the instant at which the ith hop takes place. An
atomic path is characterized by the number 2n of hops, by the set of ti (0 < i � 2n) and
by τ0. In the last of equations (1), we assume that the class of τ -linear paths yields the main
contribution to the full partition function of the interacting system. The closure condition on
the path is given by (2n−1)τs +2nτ0 = β, where β is the inverse temperature and τs is the time
for which one atom remains in a well. The interaction is described by Hint (τ ) with λ being
the strength of coupling between the TLS and the polaron; λQ(τ) is the renormalized (versus
time) tunnelling energy which allows one to introduce the τ -dependence in the interacting
Hamiltonian [15].

Following a method previously developed [16] in the study of the Kondo problem, we
multiply λQ(τ) by a fictitious coupling constant s (0 � s � 1) and, by differentiating with
respect to s, one derives the single-path contribution to the partition function of the system:

ln

(
Z(n, ti)

Z0

)
= −2λ

∫ 1

0
ds

∫ β

0
dτ Q(τ) lim

τ ′→τ+
G(τ, τ ′)s (2)

whereZ0 is the partition function related toH0 andG(τ, τ ′)s is the full propagator for polarons
satisfying Dyson’s equation:

G(τ, τ ′)s = G0(τ, τ ′) + s
∫ β

0
dy G0(τ, y)λQ(y)G(y, τ ′). (3)

The polaronic free propagator G0 can be derived exactly in the model described by
equations (1) [17]. We get the full partition function of the system by integrating over the
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times ti and summing over all possible even numbers of hops:

ZT = Z0

∞∑
n=0

∫ β

0

dt2n
τ0

∫ t2−τ0

0

dt1
τ0

exp[−βE(n, ti, τ0)]

βE(n, ti, τ0) = �− (
KA +KR

) 2n∑
i>j

(
ti − tj
τ0

)2 (4)

with E(n, ti, τ0) being the single-path atomic energy. �, which is a function of the input
parameters, is not essential here, while the second addendum in equation (4) is not local
in time as a result of the retarded polaronic interactions between successive atomic hops in
the double-well potential. KA and KR are the single-path coupling strengths containing the
physics of the interacting system. KA (negative) describes the polaron–polaron attraction
mediated by the local instability and KR (positive) is related to the repulsive scattering of the
polaron by the TLS. Computation ofE(n, ti, τ0) and its derivative with respect to τ0 shows that
the largest contribution to the partition function is given by the atomic path with τs = 0. The
atom moving back and forth in the double well minimizes its energy if it takes the path with
the highest τ0-value allowed by the boundary condition—that is, with (τ0)max = (2nKBT )−1.
This result, which is general, provides a criterion for determining the set of dominant paths for
the atom at any temperature. Then, the effective interaction strengths 〈KA〉 and 〈KR〉 can be
obtained as functions of T by summing over n the dominant path contributions:

〈KA〉 = −(
λQ0

)2
B2 exp

(
2

∑
q

Aq

) ∑
q

Aqω
2
qf̃

〈KR〉 = −β(
λQ0

)3
B3 exp

(
3

∑
q

Aq

) ∑
q

Aqω
2
qf̃

(5)

with

B = (nF (ε̄)− 1) exp

(
−g

∑
q

cotanh(βωq/2)

)
Aq = 2g

√
Nq(Nq + 1).

Nq is the phonon occupation factor and nF (ε̄(g)) is the Fermi distribution for polarons.

f̃ =
N∑
n=1

(τ0)
4
max

andN is the cut-off on the number of hops in a path. The particular form of (τ0)max suggests that
many-hop paths are the excitations of relevance at low temperatures whereas paths with a low
number of hops provide the largest contribution to the partition function at high temperatures.
Since the effective couplings which determine the resistivity depend on (τ0)

4
max , and hence

on N−3 (through f̃ ), a relatively small cut-off (N � 4) ensures numerical convergence of
equations (5) over the whole temperature range. On the other hand, the non-retarded term
� in equation (4) has a slower 1/N behaviour; therefore a larger cut-off should be taken at
low temperatures where the computation of equilibrium properties such as the specific heat
is strongly influenced by many-hop atomic paths between the minima of the double-well
excitations.

The lattice Hamiltonian is that of diatomic sites whose intramolecular vibrations can favour
trapping of the charge carriers [18]. The intramolecular frequency ω0 largely determines the
size of the lattice distortion associated with polaron formation [19] while the dispersive features
of the phonon spectrum controlled by the first-neighbour (ω1) and second-neighbour (ω2)
intermolecular couplings are essential for computing the polaron properties both in the ground
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state and at finite temperatures [20]. The range of the intermolecular forces is extended to
the second-neighbour shell, since these couplings remove the phonon mode degeneracy (with
respect to dimensionality) at the corners of the Brillouin zone, thus permitting one to estimate
with accuracy the relevant contributions of high-symmetry points to the momentum-space
summations [21]. Then the characteristic frequency ω̄, which we choose as the zone-centre
frequency, is

ω̄2 = ω2
0 + zω2

1 + znnnω
2
2

where z is the coordination number and znnn is the next-nearest-neighbour number. Hereafter
we take frequency values which are appropriate to systems with rather sizable phonon spectra.

We turn now to computing the electrical resistivity due to the polaronic charge-carrier
scattering by the impurity potential with an internal degree of freedom provided by the TLS.
Assuming s-wave scattering, one gets [22, 23]

ρ = ρ0 sin2 η

ρ0 = 3ns
πe2v2

F (N0/V )2h̄

(6)

where ns is the density of TLSs which act as scatterers, vF is the Fermi velocity, V is the cell
volume, N0 is the electron density of states, e is the charge and h̄ is the Planck constant. The
phase shift η of the electronic wave function at the Fermi surface is related to the effective
interaction strengths 〈KA〉 and 〈KR〉.

The input parameters of the model number six—that is, the three molecular force constants,
g,D and the bare energy λQ0. Q0 can be chosen as �0.05 Å consistently with reported values
in the literature on TLSs which are known to exist in glassy systems [24–27], amorphous
metals [28], A15 compounds and probably in some cuprate superconductors [29–31]. In these
systems the origin of the TLSs is not magnetic. The bare electronic band D is fixed at 0.1 eV.

Let us start by studying (figure 1) the resistivity behaviour in a 3D lattice as a function of the
overall electron–phonon coupling g. λ is fixed at 700 meV Å−1, which means a bare tunnelling
energy of �35 meV, and the molecular force constants are ω0 = 60 meV, ω1 = 50 meV and
ω2 = 20 meV, respectively. At low temperatures ρ(T ) approaches the unitary limit for any
of the four g-values, thus displaying the peculiar effect of the anharmonic potential with an
internal degree of freedom. At T � 150 K, ρ develops a g-dependent broad peak which
softens and finally disappears with increasing g in the strong-coupling regime. We note that at
g > 1 the polaron energy becomes smaller than the atomic tunnelling energy; hence polaron

Figure 1. Electrical resistivity normalized to the residual
(T = 0) resistivity for four values of electron–phonon
coupling g. The bare TLS energy λQ0 is 35 meV. The
force constants which control the phonon spectrum in
the 3D lattice are: ω0 = 60 meV, ω1 = 50 meV,
ω2 = 20 meV.
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scattering by the TLS is essentially diagonal. In contrast, in the intermediate-coupling regime
(g in the range 0.5–1), the incoming polaron can release a sufficiently large amount of energy,
off-diagonal scattering by the impurity potential prevails and a broad resonance peak emerges.
At weaker g the polaronic picture would lose any validity.

Next we turn to considering the effect of the lattice dynamics on the ρ versus T behaviour.
In figures 2 and 3, the normalized resistivities are reported for the 1D and 2D molecular
lattices, respectively. Let us set g = 1, which ensures both polaron formation and the presence
of the resonance peak in 1D and 2D systems while the tunnelling energy (as in figure 1)
is in the range of the values estimated by EXAFS investigations on high-Tc systems with
double site distributions for the apical oxygen atoms [29, 32]. By taking ω0 = 60 meV and
ω1 = 50 meV we choose for the first-neighbour intermolecular coupling model a characteristic
phonon energy ω̄ � 0.1 eV. This choice allows us: (i) to treat correctly the ground-state
polaron properties versus dimensionality [21], (ii) to reproduce the sizable phonon energy of
the c-axis polarized mode due to apex oxygen vibrations coupled to the holes in the Cu–O
planes of YBa2Cu3O7−δ . In underdoped compounds (whose c-axis resistivity displays the
unusual non-metallic behaviour), this mode appears enhanced in energy [33]. Although our
simple cubic lattice does not account for the details of the structural effects of YBCO, we are
in the appropriate range of parameters for capturing the main features of the lattice polarons

Figure 2. The 1D electrical resistivity as a function of the
second-neighbour intermolecular force constant. g = 1.
λQ0, ω0 and ω1 are as in figure 1.

Figure 3. The 2D electrical resistivity as a function of the
second-neighbour intermolecular force constant. g = 1.
λQ0, ω0 and ω1 are as in figure 1.
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scattered by local instabilities in those compounds. The role of the second-neighbour couplings
is emphasized in figures 2 and 3 by varying ω2, which however should not exceed ω1. On
increasing ω2, the polaron spreads in real space and becomes lighter. Accordingly the height
of the peak decreases. We also note that the strength of the intermolecular forces influences
the position of the peak versus temperature which results from a balance between competing
attractive and repulsive interactions (equations (5)). For fixed parameters, the height of the 1D
peak is roughly twice that of the 2D one. Comparing the dotted 2D curve (ω2 = 20 meV) with
the corresponding case (g = 1 plot) in figure 1, one sees that the 3D peak is further reduced
and its absolute value lies below the residual resistivity value.

The dynamics of the TLS and its coupling to the charge carrier strongly affect the transport
in any dimensionality, as figure 4 makes evident. When λ is small (i.e. below 300 meV Å−1

in 1D), the polaron and TLS are weakly coupled, off-diagonal scattering is unlikely to occur
and the conductivity is metallic-like. On increasing λ, the atomic tunnelling energy becomes

(a) (b)

(c)

Figure 4. Electrical resistivities for six values of the polaron–TLS coupling λ in units meV Å−1.
g = 1. ω0 = 60 meV, ω1 = 50 meV, ω2 = 30 meV. (a) One dimension; (b) two dimensions;
(c) three dimensions.
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of the order of the polaron energy and the conditions for resonant scattering are established.
Note that on varying λ the resistivity peak does not shift versus temperature while the threshold
value of λ for the appearance of metallic conductivity is larger in higher dimensionality. This
means that 3D systems can sustain a larger degree of anharmonicity (than low-dimensional
systems) and still exhibit metallic transport properties, while trapping of the charge carrier by
the anharmonic impurity potential is favoured in 1D. It is this trapping which causes the broad
resistivity peak and non-metallic transport at T larger than �100 K in 1D.

We investigate further the effect of the molecular forces (figure 5) by increasing the intra-
molecular energy and decreasing the intermolecular energies with respect to those of figure 4.
The 1D peak (compare figure 5(a) and figure 4(a)) is reduced for any λ-value, whereas the
2D and 3D peaks are here larger than in figures 4(b) and 4(c) respectively. The reason is the
following: in 1D, the intramolecular coupling is dominant because of the low coordination
number; as a result, on enhancing ω0 the carriers become lighter and the absolute resistivity

(a) (b)

(c)

Figure 5. Electrical resistivities for six values of the polaron–TLS coupling λ in units meV Å−1.
g = 1. ω0 = 80 meV, ω1 = 40 meV, ω2 = 20 meV. (a) One dimension; (b) two dimensions;
(c) three dimensions.
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is reduced. In contrast, in 2D and mostly in 3D, long-range effects are more effective; hence,
the stronger ω0 (with respect to the values for figure 4) is more than balanced by the weaker
ω1 and ω2; as a result, the characteristic 2D and 3D phonon frequencies are smaller, polarons
become less mobile and the resistivity peaks are accordingly higher.

3. Conclusions

The path integral formalism has been applied to study the time-retarded interaction problem
for a polaron scattered by a local anharmonic potential in a lattice of diatomic molecules. I
have derived the full partition function of the system and obtained analytically the effective
coupling strengths as a function of temperature. The electrical resistivity has been computed
for any lattice dimensionality for a large choice of input parameters. The strength of the
overall electron–phonon coupling (g), the strength of the polaron–local potential coupling (λ)
and the strength of the molecular forces interfere, giving rise to a rich variety of resistivity
behaviours versus temperature. As a main feature, when the conditions for resonant scattering
between the polaron and local double-well potential are fulfilled, a broad resistivity peak
shows up in the 100–150 K range. However, the shape of the peak essentially depends on the
dynamics of the local potential (tuned byλ) and, for sufficiently low atomic tunnelling energies,
metallic conductivity conditions are recovered. Generally, in 3D the resistivity maximum is less
pronounced than in low dimensionality and, for sufficiently strong intermolecular couplings,
the height of the peak lies below the residual resistivity value, therefore being hardly visible
in experiments. On the other hand, in 1D and 2D, the maximum can easily become larger
than the residual resistivity by a factor of �3–4 for realistic choices of tunnelling energies and
lattice force constants. Then, non-metallic resistivities can be expected in low-dimensional
polaronic systems with local lattice instabilities at least for temperatures above �100 K. As a
final remark, one should add that, while the intramolecular and intermolecular energies have
been varied throughout the paper as apparently independent parameters, their values for real
systems can be obtained (for instance) by a least-squares procedure of fitting to experimentally
known physical quantities [34].
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